什么是晶振彈性性質(zhì)?石英晶振的彈性與應(yīng)力有關(guān)嗎?
在外力作用下,物體的大小和形狀都要發(fā)生變化,通常稱之為形變。如果外力撤消后,物體能恢復(fù)原狀,則這種性質(zhì)稱為物體的彈性;如果外力撤消后,物體不能恢復(fù)原狀,則這種性質(zhì)就稱為物體的塑性。自然界既不存在完全彈性的物體,也不存在完全塑性的物體。對于任何物體,當(dāng)外力小時,形變也小,外力撤消后,物體可完全復(fù)原;當(dāng)外力大時,形變也大。若外力過大,形變超過一定限度,物體就不會復(fù)原了。這就說明,物體有一定的彈性限度,超過這個限度就變成塑性。與壓電有關(guān)的問題,都屬于彈性限度范圍內(nèi)的問題。因此,這里僅討論物體的彈性性質(zhì)。
一、應(yīng)力
選兩根長度相等,粗細不同的橡皮繩,當(dāng)這兩根橡皮繩受到相同的拉力作用時,顯然,細橡皮繩比粗橡皮繩拉得長一些。為什么在相同的外力作用下,它們的伸長量不一樣呢?這是因為兩根橡皮繩的粗細不一樣,也就是橫截面的大小不樣。由此可見,在拉力的作用下,物體的伸長量不僅與力的大小有關(guān),而且還與物體的橫截面的大小有關(guān)。為了計入橫截面大小的影響,引入單位面積的作用力(即應(yīng)力)這個概念,它的數(shù)學(xué)表達式為:
式中,T為應(yīng)力,F為作用力,A為橫截面(即力的作用面積)。通常規(guī)定作用力為拉力時,T>0,作用力為壓力時,T<0。
二、應(yīng)變
選擇兩根長度不等,但粗細相同的橡皮繩,當(dāng)這兩根橡皮繩受到相同的拉力作用時,它們的應(yīng)力相同,而伸長量不同,即長橡皮繩比短橡皮繩拉得長一些。由此可見,物體的伸長量不僅與應(yīng)力有關(guān),而且還與原來的長度有關(guān)。為了計入長度的影響,引入單位長度的伸長量(即應(yīng)變)這個概念。它的數(shù)學(xué)表達式為
(2.2.2)
式中,S為應(yīng)變,l為原長,△l為伸長量,△l為單位長度的伸長量(或相對伸長量)。
三、正應(yīng)力與正應(yīng)變
如圖2.2.1(a)所示的小方片,當(dāng)它受到x方向的應(yīng)力作用時,除在x方向產(chǎn)生伸長外,同時在y方向也產(chǎn)生收縮,如圖2.2.1(b)所示。同樣,當(dāng)小方片受到y方向的應(yīng)力作用時,除了在y方向產(chǎn)生伸長外,同時在x方向也產(chǎn)生收縮
如圖2.2.1(c)所示。上述
(a)未受力情況(b)沿x方向受力時的形變情況(c)沿y方向受力時的形變情況
圖2.2.1小方片應(yīng)力、應(yīng)變示意圖
沿x方向應(yīng)力和y方向應(yīng)力的特點是,力的方向與作用面垂直(或力的方向與作用面的法線方向平行)。為了反應(yīng)這兩個方向在應(yīng)力符號上要附加兩個足標(biāo),例如Tx和Ty。應(yīng)力的第一個足標(biāo)表示力的方向,第二個足標(biāo)表示作用面的法線方向。同理,應(yīng)變也有兩個足標(biāo),例如Sx和Sy應(yīng)變的第一個足標(biāo)表示原長度的方向,第二個足標(biāo)表示伸長量的方向,Tx、Ty又稱正應(yīng)力(或伸縮應(yīng)力),Sx、Sy又稱為正應(yīng)變(或伸縮應(yīng)變)為了簡便,通常將足標(biāo)中的(x,y,z)用(1,2,3)表示,而且將雙足標(biāo)簡化為單足標(biāo),雙足標(biāo)與單足標(biāo)的關(guān)系如表2.2.1所示。
四、切應(yīng)力與切應(yīng)變
形變前為一正方形的薄片,在形變后變?yōu)榱庑?/span>,這樣的形變稱為石英晶振晶體的切變,如圖22.2所示。從圖中看出,切變的特點是形變前、后四個邊之間的夾角發(fā)生了變化,一個對角線被拉長,另一個對角線被壓縮。而且角度6xy和eyx的變化越大,切變越大。因此切應(yīng)變與這兩個角度之間的關(guān)系為:
顯然,S6這種切應(yīng)變,在如圖2.2.3所示的兩對應(yīng)力(Tyx,Tyx和Txy,Tyx)的作用下產(chǎn)生的,而這兩對應(yīng)力稱為切應(yīng)力。石英晶振,有源晶振,石英晶體諧振器等壓電水晶元件切應(yīng)力的特點是:力的方向與作用面平行,它可以使物體產(chǎn)生切變,而不能使物體產(chǎn)生轉(zhuǎn)動,故有:
Tyx= Txy = T21 = T12 =T6
五、應(yīng)力張量和應(yīng)變張量
由于應(yīng)力不僅與作用力的方向有關(guān),而且還與作用面的法線方向有關(guān),所以,在三維情況下,應(yīng)力分量有9個,如圖224所示。其中,正應(yīng)力為:
這就是說,應(yīng)力張量只有6個獨立分量,為了運算方便,在晶體物理中常將應(yīng)力張量寫成一列矩陣,即:
與應(yīng)力張量的情況相同,應(yīng)變張量也只有6個獨立分量。在晶體物理中常將應(yīng)變張量寫成一列矩陣,即:
式中S1、S2、S3分別表示沿x、y、z方向的正應(yīng)變;S4、S5、S6分別表示沿x、y、z平面的切應(yīng)變。
六、應(yīng)變分量與位移分量之間的關(guān)系
設(shè)u、v、w分別表示沿x、y、z方向的位移分量,則應(yīng)變分量與位移分量之間的關(guān)系為:
在石英晶振桿上選一小段AB,如圖22.5(a)所示,若A端的位置坐標(biāo)為x,B端的位置坐標(biāo)為x+dx,則AB小段的原長為:
x+dx-r=dx
在外力作用下,若A端的位移為u,B端的位移為u+dh,則AB兩端的相對位移為:
u+du-u=du
當(dāng)da=0時,它表示AB兩端的位移相等,即原長不變。當(dāng)dh≠0時,它表示AB兩端的位移不等.即AB段的長度發(fā)生了變化,而dh就是等于它沿x方向的伸長量。根據(jù)正應(yīng)變的定義:沿x方向的正應(yīng)變S1等于x方向的伸長量與x方向上的原長之比,即得到S1=正應(yīng)變S2和S3與S1的情況類似。再以切應(yīng)變S6為例。根據(jù)切應(yīng)變的定義:
切應(yīng)變S4和S5與S6的情況類似。
七、應(yīng)力與應(yīng)變的關(guān)系一彈性定律
實驗上發(fā)現(xiàn),在彈性限度范圍內(nèi),有源晶振,石英晶體振蕩器應(yīng)力大時,應(yīng)變也大;應(yīng)力小時,應(yīng)變也小。人們根據(jù)長期的生產(chǎn)實踐,總結(jié)了這個規(guī)律,稱為彈性定律或廣義胡克定律,即“在彈性限度范圍內(nèi),物體內(nèi)任意一點的應(yīng)變分量與該點應(yīng)力分量之間存在線性關(guān)系”。對于完全各向異性體(如三斜晶系),彈性定律的數(shù)學(xué)表示式為:
式中系數(shù)S稱為彈性柔順常數(shù),并有Sij=Sji(i≠j),由式(2.2.8)可以看出不僅正應(yīng)力能產(chǎn)生正應(yīng)變,而且切應(yīng)力也能產(chǎn)生正應(yīng)變;同樣,不僅切應(yīng)力能產(chǎn)生切應(yīng)變,而且正應(yīng)力也能產(chǎn)生切應(yīng)變。這就是說,在一般情況下,應(yīng)變與應(yīng)力之間的關(guān)系是比較復(fù)雜的。
相關(guān)資訊
- [2023-06-26]Rakon推出RakonXpress品牌的現(xiàn)成頻率...
- [2023-06-20]Cardinal晶振公司環(huán)境政策,CSM1Z-A0B...
- [2023-06-20]Cardinal晶振ROSH證明,CX532Z-A2B3C5...
- [2023-06-17]為什么選擇ClearClock有源晶振,AK2AD...
- [2021-01-21]低功耗性能且含數(shù)字溫度補償?shù)臅r鐘IC...
- [2020-12-04]TXC晶振車規(guī)級頻率組件最新產(chǎn)品應(yīng)用方...
- [2020-10-19]石英振蕩器系列六——產(chǎn)品未來應(yīng)用市...
- [2020-10-16]石英振蕩器系列五之如何獲取更優(yōu)良的...